

Modeling and Simulation of Hybrid Electric Vehicles: ADVISOR and the Digital Functional Vehicle

Keith Wipke

Senior Engineer, Vehicle Systems Analysis Team, National Renewable Energy Laboratory

Presentation Outline

- Background and Capabilities of ADVISOR
- Demonstration of ADVISOR 3.0
- Parametric Vehicle and First-Order Packaging
- Linking ADVISOR and ADAMS/Car

Light-Duty Hybrid Electric Vehicle Program

Vehicle Climate Control

Vehicle Systems
Analysis

Digital Functional
Vehicle

Battery Thermal Management

Big 3 Partnership (55 mpg, mid-size vehicle)

Historical Perspective: Evolution of ADVISOR in 6 Years

Overall Vision: Digital Functional Vehicle

Background on ADVISOR

- ADVISOR = ADvanced VehIcle SimulatOR
 - simulates conventional, electric, or hybrid vehicles (series, parallel, or fuel cell)
- ADVISOR was created in 1994 to support DOE Hybrid

Program at NREL

 Released on vehicle systems analysis web site in September, 1998

- Downloaded by over 2000 people around world
- Users help provide component data and validation, feedback for future development

ADVISOR Being Used Globally August 2000: >2000 users

ADVISOR Downloads by Continent

ADVISOR Downloads by Country

Legend included countries with 25 or more users Total number of countries using ADVISOR = 70

As of 8/17/00

ADVISOR Downloads by Type of Organization

NREL, Center for Transportation Technologies and Systems

ADVISOR Downloads by Industry

ADVISOR Downloads by Universities

- Ohio State University
- University of Michigan
- University of Maryland
- University of Bath
- George Washington University
- University of California Davis
- Texas Tech University
- □ Georgia Institute of Technology
- Cornell University
- University of Tennessee
- □ Texas A&M University
- Hanyang University
- Pennsylvania State University
- San Diego State University
- Seoul National University
- West Virginia University
- Anna University
- □ University of Colorado
- □ University of Sheffield
- □ Virginia Tech
- □ Cranfield university
- Institute for Advanced Engineering
- MIT

Legend includes universities with 5 or more users Total number of universities using ADVISOR = 277

As of 8/17/00

ADVISOR Downloads by State

ADVSIOR Downloads by Government Agencies/Labs

Multiple Versions Downloaded as one Indicator of "Active" Users

~20% appear to be "active" with ADVISOR

Multiple Versions Downloaded as one Indicator of "Active" Users

~20% appear to be "active" with ADVISOR

Number of ADVISOR Versions Downloaded (8/17/00)

ADVISOR Users Conference: August 2000

ADVISOR Users Conference: Program

Three Main ADVISOR Screens (Roadmap)

Vehicle Input

Simulation Setup

Results

ADVISOR Demonstration

- Metric
- O US

Vehicle Input Screen

Current ADVISOR scaling algorithm is linear

(motors and engine)

Stretch

Original Data Map

Vehicle Input Screen, Autosize Function

Simulation Setup Screen

Simulation Setup Screen Simulation Parameters--ADVISOR 3.0 _ O X File Edit Units Help CYC_NREL2VAIL Drive Ducle CYC_NREL2VAIL 12000 # of cycles SOC Correction Cycle Filter zero delta ▼ 10000 15 Max Iterations (udu) pa Initial Conditions Tolerance [%] 0.5 8000 speed Constant Road Grade efevation Control Strategy Optimization Setup Window Control Strategy Optimization Method Selection Test Procedure TEST CITY HWY C Optimize using Melleb ⊕ Optimize using VisualDOC Cycle/Test Procedure Selection Additional Tests C Test Procedure TEST_CITY_HW Drive Cycle CYC FUDS Accel Options Appeleration Test Design Variables Brade Dotions Gradeability Test at Variable Name Initial Condition Lower Bound # Points 1st Sweep # Points 2nd Sweep Upper Bound ✓ cs_lo_sec 0.4 0.1 0.5 ✓ cs hi soc 0.8 0.55 1 # of variables Parametric Study os charge per [W] 0 20503.51 1000 CI min pwr M 20503.51 Low High # Ph 1000 20503.51 Variable 1 CS Bax DW [W] 20503.51 20503.51 41007.03 1350 1750 cs_max_pwr_rise_rate fw/st 0 1 5000 Variable 2 Ct_max_pvr_fall_rate [W/s] 0 -5000 -1 cs_min_off_time Inf 0 200 cs to init state (boolean) Variable 3 Objectives/Constraints VisualDOC Parameters OBJ CON Weighting Factor (0-1) Value Save Help Load Sim. Setup Optimize as yers 0.4 RUN Back PM Emissions (Minimize.g/mi). DEFAULTS HELP

CANCEL

RUN

"Test Procedures" Currently Available

Combined City/Highway

Real World

SAE J1711 HEV Test Procedure

CENTER FOR TRANSPORTATION TECHNOLOGIES AND SYSTEMS

Cycle Results Screen

Cycle Results Screen, Energy Usage Figure

Parametric Results: 2D and 3D

Fuel economy, emissions, acceleration times, or achieved grade as a function of your chosen variables can be displayed

3 Variable Parametric Study

2 Variable Parametric Study

Optimization Allows Complex Trade-Offs to be Performed Numerically

Help

Control Strategies Have Significant Impact on Emissions and Fuel Economy: Optimization Needed

Save

Help

Exit

Even within Emissions Targets there are Trade-offs: Example: Better NOx, PM, But Worse CO, HC

Software Availability on Web

- NREL's Vehicle Systems
 Analysis web site launched in September 1998
- ADVISOR 3.0 available for free after filling out simple form
- 'Forum' has bulletin area for questions to be answered and files to be shared
- Documentation viewable from web site
- Reading room has all papers and presentations from team

Clockwise: Ken Kelly, Sam Sprik, Keith Wipke, Tony Markel, Valerie Johnson, Aaron Brooker, Terry Hendricks

Example of Linking with Packaging

Loading ADVISOR Vehicle into Pro/HEV

E-mail notification of VRML files

Visualizing VRML Vehicle in Browser

Visualizing VRML Vehicle in Browser

Battery Packaging Comparison from Previous Study (for illustration purposes)

Full Parametric Vehicle Assembly also Includes Geometry Useful for Many Groups at NREL

Linking Systems Level Analysis with Vehicle Dynamics

Outline: Interfacing ADVISOR and ADAMS/Car

- Two interface approaches will be used:
 - ADAMS/ADVISOR Co-simulation

Export to ADAMS/Car

 Each approach has its own advantages and serves different simulation purposes.

What?

- Linking ADAMS/Car full vehicle model with ADVISOR model
- Both ADAMS and Simulink solvers run together
- Information passed back and forth between the two at each time step

How?

- ADAMS/Car full vehicle model using customized powertrain template
- Modified ADVISOR model to work with ADAMS/Car model

- Why?
 - Simulate 4WD/AWD powertrains
 - torque split can be actively controlled by ADVISOR
 - Vehicle handling/dynamics with new CM from ADVISOR
 - can look at stability issues relating to battery placement
 - Calculate energy losses during handling/durability events
 - useful for trying minimizing losses for maximum fuel efficiency
 - Integrate accessory loads (like electric power steering) and look at their energy impact vs. performance
 - Trade-offs to accurately assess impact of vehicle/component mass reduction and evaluating effect on dynamic performance
 - Perform anything you would normally do in ADAMS/Car, but using an advanced powertrain from ADVISOR

Information Flow

The major variables exchanged are shown below.
 Additional information will also be exchanged.

ADAMS/Car
Full Vehicle Model

Vehicle Dynamics & Stability Analysis

Vehicle Velocity

Co-simulation

ADVISOR

Hybrid powertrains, Energy management, Controls

Exporting ADAMS/Car Plant to Simulink

Export to ADAMS/Car

What?

- ADAMS/Car full vehicle model with mass and inertia properties exported from ADVISOR
- One way information flow to ADAMS/Car

How?

- Output mass and inertia properties from ADVISOR to ADAMS/Car.
 - Optionally, geometry may be specified in web interface
- Run standard handling maneuvers in ADAMS/Car

Export to ADAMS/Car

- Why?
 - Faster simulations
 - Quick estimate of handling performance of hybrid vehicle
 - Example: allows analysis of battery pack location (often a large mass) and effect on handling
- Information flow:

Conclusions

- ADVISOR 3.0 is a user-friendly simulation tool available to the public through the web
 - www.nrel.gov/transportation/analysis
- Widespread usage of the model globally has led to a large database of components and vehicles
- Providing source code to users facilitates better understanding and usage of model
- Validation has been performed and is an ongoing process
- NREL is working with industry to link ADVISOR up to tools they use, such as:
 - Pro/E (visualization, packaging)
 - Visual-Doc (Optimization)
 - SABER (electrical)
 - ADAMS/Car (vehicle dynamics)
 - Flowmaster (detailed thermal modeling)

